
IFT3335 Lecture 4: Informed Search

Introduction to Artificial Intelligence

Bang Liu, Jian-Yun Nie

Certain Slides Adapted From or Referred To…

๏ Slides from UC Berkeley CS188, Dan Klein and Pieter Abbeel
• A* Search and Heuristics: https://inst.eecs.berkeley.edu/~cs188/su21/

๏ Slides from UPenn CIS391, Mitch Marcus
• Informed Search: https://www.seas.upenn.edu/~cis391/#LECTURES

2

https://inst.eecs.berkeley.edu/~cs188/su21/
https://www.seas.upenn.edu/~cis391/#LECTURES

Plan3

๏ Informed search: use problem-specific knowledge

๏ A* search: optimal search using knowledge

๏ Heuristics

Informed Search

Recap: Search

๏ Search problem:
• States (configurations of the world)
• Actions and costs
• Successor function (world dynamics)
• Start state and goal test

๏ Search tree:
• Nodes: represent plans for reaching states
• Plans have costs (sum of action costs)

๏ Search algorithm:
• Systematically builds a search tree
• Chooses an ordering of the fringe (unexplored nodes)
• Optimal: finds least-cost plan

5

Example: route finding

Recap: Breadth-First Search (BFS)

๏ BFS first visit all the nodes at the same depth first and then proceed visiting nodes at a deeper
depth (strategy: expand a shallowest node first)

6

Recap: Depth-First Search (DFS)

๏ DFS first explores the depth of the graph before the breadth i.e., it traverses along the
increasing depth and upon reaching the end, it backtracks to the node from which it was started
and then do the same with the sibling node.

7

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2

Recap: Uniform-Cost Search8

Equivalent to breadth-first
if step costs all equal.

Is Uniform-Cost Search the best we can do?9

๏ Remember: UCS explores increasing cost contours

๏ The good: UCS is complete and optimal!

๏ The bad:
• Explores options in every “direction”
• No information about goal location

Consider finding a route from Bucharest to Arad..10
Is Uniform Cost Search the best we can do?
Consider finding a route from Bucharest to Arad..

Arad

118

3CIS 391 - Intro to AI

g(n)<100

g(n)<300

g(n)<200

Consider finding a route from Bucharest to Arad..11
Is Uniform Cost Search the best we can do?
Consider finding a route from Bucharest to Arad..

Arad

118

4

g(n)<300

CIS 391 - Intro to AI

g(n)<100

g(n)<200

WRONG
WAY!!!!

A Better Idea: Use Information about Goal Location

๏ Idea:
• Node expansion based on an estimate which includes distance to the goal

๏ General approach of informed search:
• Best-first search: node selected for expansion base on an evaluation function f(n)
• f(n) includes estimate of distance to goal (new idea!)

๏ Implementation:
• Sort frontier queue by this new f(n).

๏ Special cases:
• Greedy best-first search
• A* search

12

Search Heuristics

๏ A heuristic is:
• A function h(n) that estimates how close a state n is to a goal.

Heuristic knowledge is useful, but not necessarily correct.
• Heuristic algorithms use heuristic knowledge to solve a problem.
• Examples: Manhattan distance, Euclidean distance for pathing

13

Example: Heuristic Function14

Greedy Search

Review: Best-First Search

๏ Basic idea: select node for expansion with minimal evaluation function f(n)
• where f(n) is some function that includes estimate heuristic h(n) of the remaining distance to

goal

๏ Implement using priority queue

๏ Exactly UCS with f(n) replacing g(n)

16

Greedy Best-First Search: f(n) = h(n)

๏ Expands the node that is estimated to be closest to goal

๏ Completely ignores g(n): the cost to get to n

๏ Here, h(n) = hSLD(n) = straight-line distance from n to Bucharest

17

Greedy best-first search example18

Greedy best-first search example19

Greedy best-first search example20

Greedy best-first search example21

Properties of greedy best-first search

๏ Optimal? No!
• Found: Arad!Sibiu!Fagaras!Bucharest (450km)

• Shorter: Arad !Sibiu !Rimnicu Vilcea !Pitesti !Bucharest (418km)

22

Initial

Goal

Properties of greedy best-first search

๏ Complete? No!
• Can get stuck in loops, e.g., Iasi!Neamt!Iasi!Neamt!...

23

Goal
Initial

Properties of greedy best-first search

๏ Time? – worst case (like Depth First Search)
• But a good heuristic can give dramatic improvement of average cost

๏ Space? – priority queue, so worst case: keeps all (unexpanded) nodes in memory

O(bm)

O(bm)

24

A* Search

A* Search: Combining UCS and Greedy

๏ Best-known form of best-first search.

๏ Key Idea: avoid expanding paths that are already expensive, but expand most promising first.
• Uniform-cost orders by path cost, or backward cost g(n), the cost so far to reach the node n
• Greedy orders by goal proximity, or forward cost h(n), the estimated cost to get from the

node n to the goal
• A* Search orders by the sum: f(n) = g(n) + h(n), the estimate total cost of path through n to

goal

๏ Implementation: Frontier queue as priority queue by increasing f(n)

26

A* Search Example27

Frontier queue:
Arad 366

A* Search Example28

Frontier queue:
Sibiu 393

Timisoara 447

Zerind 449

We add the three nodes we found to the Frontier queue. We sort them according
to the g()+h() calculation.

A* Search Example29

Frontier queue:
Rimricu Vicea 413

Fagaras 415

Timisoara 447

Zerind 449

Arad 646

Oradea 671

When we expand Sibiu, we run into Arad again. Note that we’ve already
expanded this node once; but we still add it to the Frontier queue again.

A* Search Example30

Frontier queue:
Fagaras 415

Pitesti 417

Timisoara 447

Zerind 449

Craiova 526

Sibiu 553

Arad 646

Oradea 671

We expand Rimnicu Vilcea.

A* Search Example31

Frontier queue:
Pitesti 417

Timisoara 447

Zerind 449

Bucharest 450

Craiova 526

Sibiu 553

Sibiu 591

Arad 646

Oradea 671

When we expand Fagaras, we find Bucharest, but we’re not done.

The algorithm doesn’t end until we “expand” the goal node.

It has to be at the top of the Frontier queue. In another words:

A* doesn’t stop when enqueue a goal. It stops when dequeue a goal.

A* Search Example32

Frontier queue:
Bucharest 418

Timisoara 447

Zerind 449

Bucharest 450

Craiova 526

Sibiu 553

Sibiu 591

Rimnicu Vilcea 607

Craiova 615

Arad 646

Oradea 671 Note that we just found a better value for Bucharest!

Now we expand this better value for Bucharest since it’s at the top of the queue.

We’re done and we know the value found is optimal!

Is A* Optimal?

๏ What went wrong?

๏ Actual bad goal cost < estimated good goal cost

๏ We need estimates to be less than actual costs!

33

Admissible Heuristics

๏ A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

๏ Inadmissible (or pessimistic because they overestimate the cost) heuristics break optimality by
trapping good plans on the fringe.

๏ Admissible (or optimistic because they can only underestimate the cost) heuristics can only
slow down search by assigning a lower cost to a bad plan so that it is explored first but sooner
or later A* will find the optimal solution.

๏ Coming up with admissible heuristics is most of what’s involved in using A* in practice.

h*(n)

34

0 ≤ h(n) ≤ h*(n)

Example of Admissible Heuristics35

Pancake sorting problem: sorting a disordered
stack of pancakes in order of size when a spatula
can be inserted at any point in the stack and used
to flip all pancakes above it

Cost: Number of pancakes flipped

The gap heuristic function: a gap occurs whenever
two adjacent pancakes in a stack are not adjacent in
the sorted stack; this computation includes the plate
as a pancake. The gap heuristic function then counts
the number of gaps in the stack.

2

0

1

Example of Admissible Heuristics36

Optimality of A* Tree Search

๏ Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

๏ Claim:
• A will exit the fringe before B

37

๏ Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Optimality of A* Tree Search: Blocking38

๏ Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

Optimality of A* Tree Search: Blocking39

๏ Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

Optimality of A* Tree Search: Blocking40

๏ Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B

• A expands before B

• A* search is optimal

Optimality of A* Tree Search: Blocking41

Optimality of A* (intuitive)

๏ Lemma: A* expands nodes on frontier in order of increasing f value
• Gradually adds "f-contours" of nodes

• Contour i has all nodes with , where

• (After all, A* is just a variant of uniform-cost search....)
f = fi fi < fi+1

42

Property of A*

๏ Optimality: Yes

๏ Completeness: Yes
• Since bands of increasing f are added
• As long as b is finite (guaranteeing that there aren’t infinitely many nodes n with f (n) < f(G))

๏ Time complexity:
• Number of nodes expanded is still exponential in the length of the solution.

๏ Space complexity:
• It keeps all generated nodes in memory
• Hence space is the major problem not time

43

BFS vs UCS vs A* Contours44

Source: https://www.redblobgames.com/pathfinding/a-star/introduction.html

Contours

https://www.redblobgames.com/pathfinding/a-star/introduction.html

45

https://www.youtube.com/watch?v=X3x7BlLgS-4&ab_channel=TimoBingmann

In the Maze:
Breadth First Search Algorithm:
Time - 2.68s, path length: 275
Best First Search Algorithm:
Time - 2.46s, path length: 299
A* Search Algorithm: Time -
3.01s, path length: 275

In the Roughly Open Area:
Breadth First Search Algorithm:
Time - 2.58s, path length: 93
Best First Search Algorithm:
Time - 0.22s, path length: 101
A* Search Algorithm: Time -
0.76s, path length: 93

In the Curvy Path Area:
Breadth First Search Algorithm:
Time - 2.84s, path length: 123
Best First Search Algorithm:
Time - 0.60s, path length: 175
A* Search Algorithm: Time - 2.38,
path length: 123

https://www.youtube.com/watch?v=X3x7BlLgS-4&ab_channel=TimoBingmann

A* Applications

๏ Video games

๏ Pathing / routing problems

๏ Resource planning problems

๏ Robot motion planning

๏ Language analysis

๏ ...

46

Heuristics

Creating Admissible Heuristics

๏ Most of the work in solving hard search problems optimally is in coming up with admissible
heuristics

๏ Often, admissible heuristics are solutions to relaxed problems, where new actions are available

๏ Inadmissible heuristics are often useful too

48

Example: 8 Puzzle

๏ What are the states?

๏ How many states?

๏ What are the actions?

๏ How many successors from the start state?

๏ What should the costs be?

49

Example: 8 Puzzle

๏ Heuristic: Number of tiles misplaced

๏ Why is it admissible?

๏ h(start) = 8

๏ This is a relaxed-problem heuristic

50

Example: 8 Puzzle

๏ What if we had an easier 8-puzzle where any tile
could slide any direction at any time, ignoring other
tiles?

๏ Total Manhattan distance

๏ Why is it admissible?

๏ h(start) = 3+1+2+… = 18

51

Example: 8 Puzzle

๏ How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

๏ With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but usually do more

work per node to compute the heuristic itself

52

Trivial Heuristics, Dominance

๏ Dominance: ha ≥ hc if

๏ Heuristics form a semi-lattice:
• Max of admissible heuristics is admissible

๏ Trivial heuristics
• Bottom of lattice is the zero heuristic

(what does this give us?)
• Top of lattice is the exact heuristic

53

Graph Search

Graph Search vs. Tree Search

๏ The problem is always a graph
• The distinction between tree search and graph search is not rooted in the fact whether the

problem graph is a tree or a general graph.
• The distinction lies in the traversal pattern that is used to search through the graph, which can

be graph-shaped or tree-shaped.

55

Tree Search

๏ Tree Search
• Tree search will visit a state of the underlying problem graph multiple times, if there are

multiple directed paths to it rooting in the start state.
• Failure to detect repeated states can cause exponentially more work.

56

Graph Search

๏ Idea: never expand a state twice

๏ How to implement:
• Tree search + set of expanded states (“closed set”)
• Expand the search tree node-by-node, but...
• Before expanding a node, check to make sure its state has never been expanded before
• If not new, skip it, if new add to closed set

๏ Important: store the closed set as a set, not a list

๏ Can graph search wreck completeness? Why/why not?

๏ How about optimality?

57

Tree Search Pseudo-Code58

Graph Search Pseudo-Code59

A* Graph Search Gone Wrong?60

State space graph Search tree

S->B->C->G
Back to ->A-> C
But C is already visited, so cannot do it.

Graph Search

๏ Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) – h(C) ≤ cost(A to C)

๏ Consequences of consistency:

• The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

• A* graph search is optimal

61

Optimality of A* Graph Search

Consider what A* does with a consistent heuristic:

๏ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

๏ Fact 2: For every state s, nodes that reach s
optimally are expanded before nodes that reach s
suboptimally

๏ Result: A* graph search is optimal

62

Optimality of A* Graph Search

๏ Tree search:
• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

๏ Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h = 0 is consistent)

๏ Consistency implies admissibility

๏ In general, most natural admissible heuristics tend
to be consistent, especially if from relaxed
problems

63

A* Variants

๏ Iterative Deepening A*

๏ Recursive best first search (incorporates A* idea, despite name)

๏ Memory Bounded A*

๏ Simplified Memory Bounded A*

๏ See AIMA 3.5.4, 3.5.5 if you are interested in these topics

64

A* Summary

๏ A* uses both backward costs and (estimates of) forward costs

๏ A* is optimal with admissible / consistent heuristics

๏ Heuristic design is key: often use relaxed problems

65

Thanks! Q&A

66

